SPECIAL CHARACTERISTICS OF FLOW OF VISCOUSLY
FREE-FLOWING MEDIA IN TUBES.
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§1. We consider the plane fully established motion of a viscously free~flowing medium in a slit with a
length L(0=x=1L) and a width 2z (—a <y=a), at whose ends the uniformly distributed pressures p, and p,
are given. In the absence of mass forces, the equations for the stresses have the form

80,10z - 80,,/0y = 0, 80,,/0z + do,ldy = 0. (1.1)
It is assumed that the motion takes place only along a slit along the x axis. Then from the equation of

continuity it follows that vx is a function of the coordinate y. For a viscously free-flowing medium, the com-
ponents of the stress tensor in the plane case are connected by the relationship [1, 2]

(02 —0y)* - 402 = sin? I_U 'I" 0y + 2jetg ok — sm"q) %] (1.2)

where ¢ is the angle of internal friction; k is the coefficient of adhesion; p is the viscosity. In the case of
isotropic deformation, the main components of the tensor of the stresses and the rates of deformation coin-
cide, which leads to the dependence [1]

20, v, av,\ | év
- __Voy = (_0!7 + .(ﬁ_)/ =, (1.3)
Since 9vg/9x=0, from (1.3) follows
‘ ‘ ' ' 7 | Oy =0y = p. V (1.4)

Relationships (1.1), (1.2), and (1.4) make up a closed system of equations for determination of the un-
known stresses and the velocity of the flow vx. By virtue of symmetry with respect to the axis y =0, we shall
seek the solution in the region y>0.

Taking account of equality (1.4), from (1.2) we obtain an expression for the tangential stress
Gyy = psin @ + k cos @ ~— pndv /dy. : (1.5)

Solving Eq. (1.5) simultaneously with the equations of motion (1. 1’ and the condition of adhesion at the wall of
the slit, we find the functions of the normal and tangential stresses and the velocities of the flow vx in the
form ’ :

= Colx — y sin @) + Cy; (1.6)
v, = —QM (y—a)(y —Cy)s : (1.7
Oy = [Colx — ysin ¢) + Ci1sin @ + k& cos ¢ —C, cos*oly — (a + C,)/2], (1.8)

where Cy, Cy, C, are some constants, which will be determined below.

From the symmetry of the problem and the continuity of the tangential siresses it follows that the
motion of a viscously free-flowing medium in a limitingly stressed state cannot take place over the whole
width of the slit. In actuality, in the contrary case, with y=0, oxy =0, which contradicts equality (1.8). From
this it follows that, at the center of the slit, an elastic core W‘Lﬂl a width 2y, is formed, moving like a solid
body. At the boundary of the elastic core, the derivative of the velocity 9vy /Ay reverts to zero. Then from
(1.7) it follows that

%, = a + Ca. (1.9)
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It is obvious that, with a uniformly distributed pressure over the ends in the initial and final sections
of the slit, there must be formed transitional regions of the formation of the elastic core.

To determine the unknown constants entering into the solution (1.6)-(1.8) we make the following assump-
tions, The friction forces in the sections of the formation of the liquid core, as well as the dimensions of
these sections, can be neglected in comparison with the length of the slit. The mean value of the component
of the stress ox in the boundary cross sections of the region of the forming one-dimensional flow in the
elastic core and in the zone of the motion of the viscously free-flowing medium is equal o the pressures py
and p, at the ends of the slit.

Then, from (1.6), it follows that
+ Yo

Cong—zp =p; 4 Cp 2 sin g.

We determine the width of the elastic core from the condition of the equality of the stresses at the
boundary of the core y, and the difference of the forces applied at the ends:

L
(pl_pz)yOZSny'U:Uodx: [m;pz L — p‘;pg (a—yg)sincp]sincp-l—kcosq)~,L.
o

From this last equality we finally obtain

[(pL+p3) L — (Pl_Pz)asln(P]SIH(P-{-ZkCOSQJ L {1.10}
(py — p3) (1 + cos® @)

Yo =

Thus, the width of the elastic core with a given length of the slit depends not only on the pressure drop
but also on the values of the pressures at the end of the slit. Here there is a considerable difference in the
flow of viscousgly free-flowing media with internal friction, compared to the motion of viscous and viscoplastic
liquids. With given pressures p, and p,, the equality (1.10) enables us to determine the maximal value of the
length of the slit L, for which the natural inequality y,=a is satisfied:

2a (p1 — ps)
L< (P11 p2)sing +2kcosg *

For narrow slits, assuming a /L« 1, we obtain

LSIB‘P 2 (p,sing-+keosq) L
R (T (1.11)

From relationships (1.10), (1.11) it follows that, with small pressure drops or with sufficiently long
slits, there is no motion of the viscously free~flowing medium and the tube is closed. This latter circum-
stance is explained by the linear dependence of the tangential stresses on the coordinate x. Knowing the width
of the elastic core, from (1.7), (1.9) we can obtain an expression for the mass flow rate Q of the viscously
free-flowing medium through unit width of the slit:

Q= 2[5‘ vy (4) Ay + vy (¥o) yo] = ﬂﬁ&!cgsz 9 (a—y,)? "2(1—;—% .

Yo
The case of the flow of viscous and viscoplastic liquids is obtained from the solution found with ¢=0and k=90,
¢ =0, respectively.

§ 2. In the presence of mass forces of gravity the equations of motion in the case of radial symmetry
in eylindrical coordinates have the form [3]

96,/0z + 00,,/0r + o,,/r =¥y, '
d6,/0r + 00,,/0z -+ (6, — gg)/r = 0, (2.1)

where vy ig the specific weight of the medium.

Assuming that only the coordinate v, differs from zero, from the equation of continuity we obtain
ov,/0z=0. Then the equation of a limitingly stressed state and the relationship connecting the tensors of the
stresses and the deformation rates are written in the following manner [1, 3]:

ov_\2
(o, —6,)? + 407, = sin® ) (or, 40, + 2kctg o — 28 -—v—z) H (2.2)

sing or
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20 or | oz
rz
o'z — o'r 25_112. (2-3)
0z

From Eq. (2.3) and the equality 8v,/9x=0 it follows that 0, =0,. We shall seek the solution of the problem in
the form

Or == 0, = 0g == P. (2.4)
In this case, the component of the stress gy satisfies the inequality proposed in [3]:

o.+0 . 0,40, )
7= {1 —sing) <o << T5—=(1 4 sin ¢).

Taking account of (2.4), for the tangential stress o}, from (2.2) we obtain
0., = p sin ¢ + & cos ¢ — udv,/or. (2.5)

With the condition of adhesion of the viscously free-flowing medium at the wall of the tube, the solution of the
system of Egs. (2.1), (2.4), and (2.5) has the form

p = py = const,
v, = C; In (r/R) + (F/p)(r — R) — (y/40)(r* — R?), (2.6)
Op, = r/2 — pCyfr,
where F=p, sin ¢+ k cos ¢. With ¢— 0, the solution (2.6), in distinction from the plane case, does not go over
into the solution for a viscoplastic medium [4], since, with ¢ =0, there is a change in the type of the starting

system of equations. Since, in the region of a limitingly stressed state, the pressure p is constant, at one end
of the tube there may not be a transitional region of the formation of an elastic core.

Let us examine the case of the absence of a transitional section at the outlet of the tube. Then the
constant p, is equal to the pressure in the external medium with z=L. In the inlet section we neglect the
tangential stresses in the elastic region in comparison with the friction forces at the walls of the tube and
agsume that the mean pressure in the initial cross section of the core is equal to the pressure p; at the inlet
of the tube. We dencte the radius of the elastic core by r.

At the boundary r;, the relationship

..t?.,ifl €y F
or lr=r. To 1) 2w

is satisfied, from which we obtain

w

We find the value of ry from the condition of the equality of all the forces acting on the core of the flow
(py — po)y rg ++ mrfyL = 2nr FL.
We finally obtain
ro = 2F/l(py — p/L + 7). (2.7

From the latter equality it can be seen that, in spite of the different forms of the solution, the expression
for the boundary of the core r, with ¢ =0 coincides with the case of a viscoplastic liquid [4].

In the derivation of relationship (2.5) for the tangential stresses o, it was assumed that the flow takes
place in the positive direction of the z axis and that the velocity of the flow rises toward the center of the tube,
i.e., 0vy/Br=0 with ry=r =R,

Then, taking account of Eq. (2.7), from the expression for the velocity of the flow (2.6) we obtain

R 2
. Fr ¥ F_ ¥
= wr Tyt <O

We divide both parts of the latter inequality by the expression 1 —1r;/r:
F < (W/2)(r + o)
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The inequality obtained must be satisfied for the whole region of the flow of the viscously free-flowing medium
with rg=r=R and consequently

F < yro- (2.8)

Substituting into (2.8) the expression for the radius of the elastic core, we obtain
(pr — PI/L <y (2.9)

Thus, fully established motion of a viscously free-flowing medium along a vertical round tube is possible
only in the case where the pressure gradient set up by the external forces at the ends does not exceed the
specific weight of the medium. From inequality (2.9), specifically, it follows that, in the absence of mass
forces (y =0), motion without breaking down the condition of adhesion at the wall is completely impossible? i.e.,
under the action of the forces applied at the ends, a viscously free-flowing medium is either at rest (there is
closing of the tube) or it moves with slippage at the walls.

We obtain a second limiting inequality from expression (2.7) and the condition ry< r:
(ps — po)/L. > (2F — yR)/R. (2.10)
We transform the right-hand part of (2.10) in the following manner:
(2F — yR)/R = (2nRF — nR%)/nR2.
The expression ¥;=27RF represents the possible friction force af the wall of the fube without taking account
of the viscous component, and F, =7R% is the weight of the medium arriving at a unit of length. If Fi< Fy,
inequality (2.10) is satisfied for any arbitrary pressure and only the sole limiting relationship remains (2.9).

In the contrary case, the simultaneous satisfaction of inequalities (2.9) and (2.10) is required, which follows
a two-sided limitation on the length of the tube:

(py — Py < L < (py — po)/(2FIR — v).
It can be shown that the latter inequality is not contradictory; i.e., '
(s — Pl < (py — DY/ (2F/IR — ). .(Z.ll)
Actually, from (2.8) we obtain ’
y> FIR > 2F/R —y,
from which follows the validity of the inequality (2.11)

In conclusion we note that, for the case of nonisotropic deformation [1], the qualitative picture of the
flow of a viscously free-flowing medium in a tube does not change. The authors wish to express their thanks
to A. Kh. Mirzadzhanzade for his evaluation of the work and his useful observations.
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